Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips
نویسندگان
چکیده
We have indented the surface of ice at temperatures between 21 °C and 217 °C with sharp atomic force microscope tips. For a thick viscous interfacial melt layer, a Newtonian treatment of the flow of quasiliquid between the tip and the ice suggests that indentations at different indentation velocities should have the same force/velocity ratio for a given pit depth. This is observed for silicon tips with and without a hydrophobic coating at temperatures between 21 °C and 210 °C implying the presence of a liquid-like layer at the interface between tip and ice. At temperatures below about 210 °C the dependence of force on velocity is weaker, suggesting that plastic flow of the ice dominates. A simple model for viscous flow that incorporates the approximate shape of our tip is used to obtain an estimate of the layer thickness, assuming the layer has the viscosity of supercooled water. The largest layer thicknesses inferred from this model are too thin to be described by continuum mechanics, but the model fits the data well. This suggests that the viscosity of the confined quasiliquid is much greater than that of bulk supercooled water. The hydrophobically coated tip has a significantly thinner layer than the uncoated tip, but the dependence of thickness on temperature is similar. The estimated viscous layer thickness increases with increasing temperature as expected for a quasiliquid premelt layer.
منابع مشابه
Propagating phase interface with intermediate interfacial phase: Phase field approach
An advanced three-phase phase field approach (PFA) is suggested for a nonequilibrium phase interface that contains an intermediate phase, in particular, a solid-solid interface with a nanometer-sized intermediate melt (IM). A thermodynamic potential in the polar order parameters is developed that satisfies all thermodynamic equilibrium and stability conditions. The special form of the gradient ...
متن کاملPropagating phase interface with intermediate interfacial phase: phase field approach
An advanced three-phase phase fi eld approach (PFA) is suggested for a nonequilibrium phase interface that contains an intermediate phase, in particular, a solid-solid interface with a nanometer-sized intermediate melt (IM). A thermodynamic potential in the polar order parameters is developed that satisfi es all thermodynamic equilibrium and stability conditions. The special form of the gradien...
متن کاملMechanical response of adherent giant liposomes to indentation with a conical AFM-tip.
Indentation of giant liposomes with a conical indenter is described by means of a tension-based membrane model. We found that nonlinear membrane theory neglecting the impact of bending sufficiently describes the mechanical response of liposomes to indentation as measured by atomic force microscopy. Giant vesicles are gently adsorbed on glassy surfaces via avidin-biotin linkages and indented cen...
متن کاملTheory of ice premelting in porous media.
Premelting describes the confluence of phenomena that are responsible for the stable existence of the liquid phase of matter in the solid region of its bulk phase diagram. Here we develop a theoretical description of the premelting of water ice contained in a porous matrix, made of a material with a melting temperature substantially larger than ice itself, to predict the amount of liquid water ...
متن کاملAnalytical Prediction of Indentation and Low-Velocity Impact Responses of Fully Backed Composite Sandwich Plates
In this paper, static indentation and low velocity impact responses of a fully backed composite sandwich plate subjected to a rigid flat-ended cylindrical indenter/impactor are analytically investigated. The analysis is nonlinear due to nonlinear strain-displacement relation. In contrast to the existed analytical models for the indentation of composite sandwich plates, the stacking sequence of ...
متن کامل